Variational Bayesian inference and complexity control for stochastic block models

نویسندگان

  • P. Latouche
  • E. Birmelé
چکیده

It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work and numerous inference strategies such as variational Expectation Maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model based criterion, ICL, has been derived for SBM in the literature. It relies on an asymptotic approximation of the Integrated Complete-data Likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call ILvb, based on a non asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models

We present a truncation-free stochastic variational inference algorithm for Bayesian nonparametric models. While traditional variational inference algorithms require truncations for the model or the variational distribution, our method adapts model complexity on the fly. We studied our method with Dirichlet process mixture models and hierarchical Dirichlet process topic models on two large data...

متن کامل

Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression

This paper presents a novel variational inference framework for deriving a family of Bayesian sparse Gaussian process regression (SGPR) models whose approximations are variationally optimal with respect to the full-rank GPR model enriched with various corresponding correlation structures of the observation noises. Our variational Bayesian SGPR (VBSGPR) models jointly treat both the distribution...

متن کامل

Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identific...

متن کامل

Stochastic variational inference for hidden Markov models

Variational inference algorithms have proven successful for Bayesian analysis in large data settings, with recent advances using stochastic variational inference (SVI). However, such methods have largely been studied in independent or exchangeable data settings. We develop an SVI algorithm to learn the parameters of hidden Markov models (HMMs) in a time-dependent data setting. The challenge in ...

متن کامل

Stochastic Variational Inference for HMMs, HSMMs, and Nonparametric Extensions

Hierarchical Bayesian time series models can be applied to complex data in many domains, including data arising from behavior and motion [32, 33], home energy consumption [60], physiological signals [69], single-molecule biophysics [71], brain-machine interfaces [54], and natural language and text [44, 70]. However, for many of these applications there are very large and growing datasets, and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010